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GMI and aerosol-cloud interactions: status

Currently accomplished
e Installed the GMI code at Georgia Tech SGI workstations.

e Began implementing aerosol-cloud interaction modules

v The type of cloud-relevant information changes with the met
fields used (DAO, GISS).

v' Currently using DAO.

v Wrote basic routines to diagnose large-scale relative humidity
and cloud fraction from met fields

v’ Cloud properties are then calculated from parameterizations.

e Aerosol-cloud droplet parameterizations implemented
v Boucher and Lohmann (1995) — empirical
v Abdul-Razzak and Ghan (1998 and later) — mechanistic

v' Nenes and Seinfeld (2003 and later) - mechanistic




Empirical aerosol-drop parameterizations

Pros

e Simple to implement.

e Fast computation.

Cons

e Empirical

Droplet Concentration

e No physical basis.

e | arge uncertainty

Aerosol sulfate concentration

We use empirical correlations as a “benchmark”.




Mechanistic aerosol-drop parameterizations

Pros

o Explicit representation of aerosol
chemistry and size distribution.

eExplicitly calculate droplet number
and size distribution based on activatio
physical parameters

Ccons

e Relatively slower

o Need for subgrid cloud dynamics (updraft velocity). These quantities
are not available from GMI and must be inferred.

Updrafts are usually prescribed or diagnosed from large-scale TKE
resolved in the GCM. The latter is not available in GMI.

We also use an alternative proposed by Lance et al., JGR, (2004) to
infer the updrafts from combination of empirical correlations.




Inferring in-cloud updraft velocity

Empirical correlations can be used to obtain
“effective” updraft for use with mechanistic schemes.
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Determine the “effective” updraft. This is then used as a
“basecase” updraft for further perturbation experiments.




Inferring in-cloud updraft velocity: issues

Empirical correlations may yield unrealistic cloud dynamics.
The problem appears at marine/clean environments.
Polluted areas give “reasonable” updrafts

Nenes, in preparation




Inferred “effective” updraft velocity

— North Atlantic Marine
—— Continental

Effective Updraft (m/s)

— Pristine

10
sulfate (ug m-3)

« Updrafts reasonable and insensitive to [SO,] when > 2-5 g m™
(good).

* Pristine (clean) environments always have higher updrafts. Not
surprising; correlations were derived from polluted areas.

- Set the max updraft to 2 m s

Nenes, in preparation




Aerosol-cloud interaction simulations in GMI
Input quantity: Aerosol Sulfate
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Aerosol-cloud interaction simulations in GMI

Input quantity: Cloud Liquid Water Content
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Aerosol-cloud interaction simulations in GMI

Derived quantity: Cloud Fraction

January 1998 June 1997

FERRET_1 FERRET_1

HEIGHT {m
T 1510

I L
= [l
] =
= =
= E
- —

TEGW BOW i 1009 160°W
LONGITUDE LOMGITUDE

Cloud Fraction Cloud Fraction

Cloud Fraction is diagnosed from grid-scale RH using Sundqvist scheme




Aerosol-cloud interaction simulations in GMI

Derived quantity: Cloud Droplet Number
January 1998 June 1997
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Boucher and Lohmann (1995) empirical parameterization is used.




Aerosol-cloud interaction simulations in GMI

Derived quantity: Effective Radius
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Aerosol-cloud interaction simulations in GMI

Derived quantity: Cloud Albedo

January 1998
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Short term “products™ with GMI

Make sure cloud effective radius and optical depth are reasonable.

Perform an indirect forcing calculation, where the contribution of
anthropogenic aerosol to cloud optical depth (and its forcing) is
assessed.

Explicitly test sensitivity of indirect forcing estimates to:

o Met field

e Cloud droplet parameterization

e Aerosol mixing state

o Chemical effects (constrain using data obtained from field/lab
experiments on CCN activation)




Short term “products™ with GMI

e Derived formulations for sectional (Nenes and Seinfeld, 2003) and
lognormal (Fountoukis and Nenes, JGR, in press) aerosol.

e Included size-dependant mass transfer of water vapor to droplets which
eliminated underestimation tendency in parameterized droplet number
(Fountoukis and Nenes, JGR, in press).

o Explicitly can treat partially soluble organics that alter surface tension
and accommodation coefficient (Fountoukis and Nenes, JGR, in press).

e Included the effect of condensable gases (Nenes, in preparation).

e Deriving formulations with' entrainment and in-cloud chemistry.

e Have three in-situ aerosol-cloud datasets for the evaluation, that cover
climatically important cloud/aerosol types. Will get more this summer

e Use datasets to evaluate all parameterizations used in GMI




Parameterized Np(cm®)
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ICARTT Evaluation =
Continental Stratus e

CIRPAS Twin Otter

Downwind of
power plant
south of Detroit
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Implications of this work for other GMI efforts

Effective Radius used in photochemistry

Default scheme What we calculate
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Implications of this work for other GMI efforts

Cloud optical depth used in photochemistry
Default scheme What we calculate
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Cloud optical depth different in anthropogenicaly influenced regions




